LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular Engineering of Near‐Infrared‐II Photosensitizers with Steric‐Hindrance Effect for Image‐Guided Cancer Photodynamic Therapy

Photo from wikipedia

The design of photosensitizers (PSs) with fluorescence in the second near‐infrared (NIR‐II, 1000–1700 nm) window remains a challenge, as the introduction of donor or acceptor units with excessively strong electron‐withdrawing… Click to show full abstract

The design of photosensitizers (PSs) with fluorescence in the second near‐infrared (NIR‐II, 1000–1700 nm) window remains a challenge, as the introduction of donor or acceptor units with excessively strong electron‐withdrawing or donating ability leads to longer‐wavelength emission but insufficient production of singlet oxygen (1O2). In this study, a series of acceptor‐donor‐acceptor‐donor‐acceptor‐type PSs are designed by adjusting the steric hindrance of the molecules. Compound BNET forms a dihedral angle of 88° with a nearly vertically twisted backbone to show that the intensity of local emission in the first near‐infrared (750–900 nm) region declines in the aggregated state, while the emission peaks of twisted intramolecular charge transfer span over 1000 nm with significant enhancement. The albumin‐bound NIR‐II PS nanoparticles exhibit efficient 1O2 generation, good photostability and biocompatibility, and negligible dark toxicity. The nanoparticles demonstrate high specific NIR‐II fluorescence imaging of tumor lesions as well as effective image‐guided photodynamic therapy in mice bearing orthotopic colon cancer or pancreatic cancer. The designed NIR‐II PS nanoparticles show great potential for biomedical applications.

Keywords: cancer; photodynamic therapy; image guided; acceptor; near infrared; steric hindrance

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.