LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioresorbable Scaffolds with Biocatalytic Chemotherapy and In Situ Microenvironment Modulation for Postoperative Tissue Repair

Photo by dancristianpaduret from unsplash

New biomaterials with antitumor and tissue repair function have become increasingly important for the postoperative care of melanoma surgery, which could prolong the tumor‐free survival of patients while simultaneously facilitating… Click to show full abstract

New biomaterials with antitumor and tissue repair function have become increasingly important for the postoperative care of melanoma surgery, which could prolong the tumor‐free survival of patients while simultaneously facilitating the reconstruction of the trauma tissue. For this purpose, a bioresorbable composite scaffold is designed which is fabricated by depositing therapeutic amorphous calcium carbonate (ACC)‐based nanoformulations in gelatin/polycaprolactone (GP) nanofibers via electrospinning. The ACC nanoformulations are integrated with Fe2+‐preactivated bleomycin to deliver biocatalytically enhanced therapeutic effect while the hydrolysable ACC contents can act as proton scavengers to ameliorate the tumor tissue acidity in situ, leading to sustained inhibition on tumor recurrence and metastasis. The acid‐triggered ACC decomposition also releases Ca2+ to activate the downstream Wnt/β‐catenin signaling pathways, which can cooperate with the healing effect of the GP substrate and accelerate wound regeneration. The nanoengineered scaffold can be useful as a supplementary treatment for the postoperative management of melanoma.

Keywords: tissue repair; tissue; scaffolds biocatalytic; situ; bioresorbable scaffolds

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.