LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Efficient Osmotic Energy Harvesting in Charged Boron‐Nitride‐Nanopore Membranes

Photo by mbrunacr from unsplash

Recent studies of the high energy-conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean-energy harvesting from salinity… Click to show full abstract

Recent studies of the high energy-conversion efficiency of the nanofluidic platform have revealed the enormous potential for efficient exploitation of electrokinetic phenomena in nanoporous membranes for clean-energy harvesting from salinity gradients. Here, nanofluidic reverse electrodialysis (NF-RED) consisting of vertically aligned boron-nitride-nanopore (VA-BNNP) membranes is presented, which can efficiently harness osmotic power. The power density of the VA-BNNP reaches up to 105 W m−2, which is several orders of magnitude higher than in other nanopores with similar pore sizes, leading to 165 mW m−2 of net power density (i.e., power per membrane area). Low-pressure chemical vapor deposition technology is employed to uniformly deposit a thin BN layer within 1D anodized alumina pores to prepare a macroscopic VA-BNNP membrane with a high nanopore density, ≈108 pores cm−2. These membranes can resolve fundamental questions regarding the ion mobility, liquid transport, and power generation in highly charged nanopores. It is shown that the transference number in the VA-BNNP is almost constant over the entire salt concentration range, which is different from other nanopore systems. Moreover, it is also demonstrated that the BN deposition on the nanopore channels can significantly enhance the diffusio-osmosis velocity by two orders of magnitude at a high salinity gradient, resulting in a huge increase in power density.

Keywords: nitride nanopore; energy; boron nitride; power; energy harvesting

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.