LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Precision Embolism: Biocompatible Temperature‐Sensitive Hydrogels as Novel Embolic Materials for Both Mainstream and Peripheral Vessels

Photo by dtropinin from unsplash

Complete blood blockage and low ectopic embolism risk are urgently needed for transcatheter arterial chemoembolization (TACE) treatment. However, the clinically available embolic reagents still face the huge challenges of fast… Click to show full abstract

Complete blood blockage and low ectopic embolism risk are urgently needed for transcatheter arterial chemoembolization (TACE) treatment. However, the clinically available embolic reagents still face the huge challenges of fast recanalization and undesirable migration. In the present work, a temperature‐sensitive poloxamer 407 (F127)/hydroxymethyl cellulose (HPMC)/sodium alginate (SA)‐derived hydrogel (FHSgel) is explored as a novel embolic material in the TACE treatment. With increasing temperature, this FHSgel undergoes sensitive phase transition process, so as to block both mainstream and peripheral vessels. Meanwhile, taking advantage of the close fitness between shapeable FHSgel and vessels, the embolism time is extremely extended. Moreover, the leaked FHSgel could be diluted below the gelation concentration, thus effectively preventing from ectopic embolism. TACE treatment is further conducted for rabbit liver and kidney tumors, wherein the atrophic blood vessels and necrotic tissue demonstrate superior therapy effect. In addition, all three pharmaceutical excipients are approved by the Food and Drug Administration (FDA). In contrast with the clinical embolic reagents, the temperature‐sensitive FHSgel for the first time completely blocks both mainstream and peripheral vessels with totally biocompatible pharmaceutical excipients, and makes a breakthrough in terms of largely reducing the ectopic embolism risk, thus providing a new generation for interventional embolization.

Keywords: fhsgel; peripheral vessels; mainstream peripheral; embolism; temperature sensitive

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.