LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ferroic Halide Perovskite Optoelectronics

Photo by jordanmcdonald from unsplash

Metal halide perovskites (MHPs) as one of the most active materials gained tremendous attention in the past decade because of their outstanding performance in optoelectronics. Owing to their perovskite structure,… Click to show full abstract

Metal halide perovskites (MHPs) as one of the most active materials gained tremendous attention in the past decade because of their outstanding performance in optoelectronics. Owing to their perovskite structure, ferroelectricity is anticipated in this class of materials. However, whether MHPs are ferroelectric or not remains elusive. Recently, discussion regarding ferroelasticity in MHPs has been also raised. In addition, ionic motion and structural dynamics are well known in MHPs. The interplay of these phenomena including electric polarization, strain, ionic motion, and structural dynamics can have a significant impact on optoelectronics. Therefore, understanding the mechanism behind these phenomena and their interactions is critical in addressing the controversy about ferroicity of MHPs and developing functional devices. Here, the current findings about MHP's ferroicity are summarized and evaluated and a perspective for the future is provided. It is suggested that ionic motion and associated phenomena, coupled with ferroic behavior, are the main drivers behind MHPs functionality. The challenges are also discussed in probing MHPs’ ferroicity and what new measurement modalities are needed to fully understand and characterize MHP behavior. Finally, it is discussed how ferroic and strain can affect the optoelectronic performance of MHPs and how they can be used for engineering of higher performance devices.

Keywords: halide perovskite; mhps; performance; perovskite optoelectronics; ionic motion; ferroic halide

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.