LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen Defects Engineering of VO2·xH2O Nanosheets via In Situ Polypyrrole Polymerization for Efficient Aqueous Zinc Ion Storage

Photo from wikipedia

What has been a crucial demand is that designing mighty cathode materials for aqueous zinc−ion batteries (AZIBs), which are vigorous alternative devices for large−scale energy storage by means of their… Click to show full abstract

What has been a crucial demand is that designing mighty cathode materials for aqueous zinc−ion batteries (AZIBs), which are vigorous alternative devices for large−scale energy storage by means of their high safety and low cost. Herein, a facile strategy is designed that combines oxygen defect engineering with polymer coating in a synergistic action. As an example, the oxygen−deficient hydrate vanadium dioxide with polypyrrole coating (Od−HVO@PPy) is synthesized via a one‐step hydrothermal method in which introducing oxygen vacancy in HVO is simultaneously realized during the in situ polymerization. Such a desirable material adjusts the surface adsorption and internal diffusion of Zn2+ demonstrated by electrochemical characterization and theoretical calculation results. Moreover, it also utilizes conductive polymer coating to improve electrical conductivity and suppress cathode dissolution. Therefore, the Od−HVO@PPy electrode delivers a preferable reversible capacity (337 mAh g−1 at 0.2 A g−1) with an impressive energy density of 228 Wh kg−1 and stable long cycle life. This enlightened design opens up a new modus operandi toward superior cathode materials for advanced AZIBs.

Keywords: storage; engineering; oxygen; aqueous zinc; zinc ion

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.