LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interface‐Rich Three‐Dimensional Au‐Doped PtBi Intermetallics as Highly Effective Anode Catalysts for Application in Alkaline Ethylene Glycol Fuel Cells

Photo by mathieustern from unsplash

The preparation of metal electrocatalysts with excellent comprehensive properties for application in alcohol fuel cells is an urgent issue. This study reports a novel 3D Au‐doped PtBi intermetallic phase woven… Click to show full abstract

The preparation of metal electrocatalysts with excellent comprehensive properties for application in alcohol fuel cells is an urgent issue. This study reports a novel 3D Au‐doped PtBi intermetallic phase woven by sub‐7 nm building blocks. The high‐efficiency “active auxiliary” Au advances the activity and in situ anti‐CO poisoning upon ethylene glycol electrooxidation on 3D PtBiAu, along with high CC bond cleavage and attainment of a ten‐electron complete electrooxidation via a CO‐free pathway. The interface‐rich 3D structure with “nanocontainer” function, electronic effect, and dual functional sites of “Pt–Au” or “Pt–Bi” enable the 3D PtBiAu to outperform industrial Pt black and 3D PtBi intermetallics significantly. The mass activity on the 3D Pt53.1Bi43.4Au3.5 intermetallics boosts to 28.72 A mgPt−1, higher than that reported in a previous study. The 3D Pt53.1Bi43.4Au3.5 exhibits superior performance to industrial Pt/C in direct ethylene glycol fuel cells (DEGFCs). The peak power density of 3D Pt53.1Bi43.4Au3.5 is 145/92 mW cm−2 in O2/air (80 °C). Importantly, the cell voltage shows a negligible decay in both O2 and air during the 20 h durability testing. This study results in the development of novel 3D PtBiAu intermetallics as high‐performance anode electrocatalysts for application in DEGFCs.

Keywords: ptbi intermetallics; interface rich; ethylene glycol; fuel cells; doped ptbi

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.