LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells

Photo by mattpalmer from unsplash

One of the main bottlenecks that limit the performance of reversible protonic ceramic electrochemical cells (R‐PCECs) is the sluggish kinetics of the oxygen reduction and evolution reactions (ORR and OER).… Click to show full abstract

One of the main bottlenecks that limit the performance of reversible protonic ceramic electrochemical cells (R‐PCECs) is the sluggish kinetics of the oxygen reduction and evolution reactions (ORR and OER). Here, the significantly enhanced ORR and OER kinetics and stability of a conventional La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) air electrode by an efficient catalyst coating of barium cobaltite (BCO) is reported. The polarization resistance of a BCO‐coated LSCF air electrode at 600 °C is 0.16 Ω cm2, about 30% of that of the bare LSCF air electrode under the same conditions. Further, an R‐PCEC with the BCO‐coated LSCF air electrode shows exceptional performance in both fuel cell (peak power density of 1.16 W cm−2 at 600 °C) and electrolysis (current density of 1.80 A cm−2 at 600 °C at 1.3 V) modes. The performance enhancement is attributed mainly to the facilitated rate of oxygen surface exchange.

Keywords: ceramic electrochemical; electrochemical cells; air; protonic ceramic; air electrode; reversible protonic

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.