LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Injectable Hydrogel for Simultaneous Photothermal Therapy and Photodynamic Therapy with Ultrahigh Efficiency Based on Carbon Dots and Modified Cellulose Nanocrystals

Photo by rhsupplies from unsplash

The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long‐time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and… Click to show full abstract

The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long‐time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff‐base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light‐emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.

Keywords: phototherapy agents; hydrogel simultaneous; injectable hydrogel; therapy; efficiency; simultaneous photothermal

Journal Title: Advanced Functional Materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.