Order-disorder transitions are widely explored in various vortex structures in condensed matter physics, i.e., in the type-II superconductors and Bose-Einstein condensates. In this study, we have investigated the ordering of… Click to show full abstract
Order-disorder transitions are widely explored in various vortex structures in condensed matter physics, i.e., in the type-II superconductors and Bose-Einstein condensates. In this study, we have investigated the ordering of the polar vortex phase in the (PZT)n/(STO)n superlattice systems through phase-field simulations. An antiorder state is discovered for short periodicity superlattice on an SSO substrate, owing to the huge interfacial coupling between PZT and STO as well as the giant in-plane polarization in STO layers due to the large tensile strain. Increasing the periodicity leads to the anti-order to disorder transition, resulting from the loss of interfacial coupling and disappearance of the polarization in STO layers. On the other hand, for short periodicity superlattices, order-disorder-antiorder transition can be engineered by mediating the substrate strain, due to the delicate competition between the depoling effect, interfacial coupling, and strain effect. We envision this study to spur further interest towards the understanding of order-disorder transition in ferroelectric topological structures.
               
Click one of the above tabs to view related content.