LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing a Length‐Modulated Azide Photocrosslinker to Improve the Stretchability of Semiconducting Polymers

Photo by belart84 from unsplash

To impart high stretchability to semiconducting polymers, researchers have used a photocrosslinking approach based on the nitrene chemistry of an azide‐incorporated molecular additive. However, understanding of the molecular design of… Click to show full abstract

To impart high stretchability to semiconducting polymers, researchers have used a photocrosslinking approach based on the nitrene chemistry of an azide‐incorporated molecular additive. However, understanding of the molecular design of azide crosslinkers with respect to their effects on the electrical and mechanical properties of semiconducting polymer thin films is lacking. In this study, the effects of an azide photocrosslinker's molecular length and structure on the microstructural, electrical features, and stretchability of photocrosslinked conjugated polymer films is investigated. For a systematic comparison, a series of nitrene‐induced photocrosslinkers (n‐NIPSs) with different numbers of ethylene glycol repeating units (n = 1, 4, 8, 13) that bridge two tetrafluoro‐aryl azide end groups is synthesized. Two semicrystalline conjugated polymers and two nearly amorphous conjugated polymers are co‐processed with n‐NIPSs and crosslinked by brief exposure to UV light. It is found that, among the synthesized n‐NIPSs, the shortest one (1‐NIPS) is the most efficient in improving the stretchability of crosslinked indacenodithiophene‐benzothiadiazole films and that the improvement is achieved only with nearly amorphous polymers, not with semicrystalline conjugated polymers. On the basis of systematic studies, it is suggested that crosslinking density in amorphous regions is important in improving thin film stretchability.

Keywords: stretchability semiconducting; azide photocrosslinker; conjugated polymers; stretchability; semiconducting polymers; length

Journal Title: Advanced Functional Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.