LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exceeding Theoretical Capacity in Exfoliated Ultrathin Manganese Ferrite Nanosheets via Galvanic Replacement‐Derived Self‐Hybridization for Fast Rechargeable Lithium‐Ion Batteries

Photo from wikipedia

Mixed transition metal oxides are promising anodes to meet high‐performance energy storage materials; however, their widespread uses are restrained owing to limited theoretical capacity, restricted synthesis methods and templates, low… Click to show full abstract

Mixed transition metal oxides are promising anodes to meet high‐performance energy storage materials; however, their widespread uses are restrained owing to limited theoretical capacity, restricted synthesis methods and templates, low conductivity, and extreme volume expansion. Here, Mn3‐xFexO4 nanosheets with interconnected conductive networks are synthesized via a novel self‐hybridization approach of a facile, galvanic replacement‐derived, tetraethyl orthosilicate‐assisted hydrothermal process. An exceptionally high reversible capacity of 1492.9 mAh g−1 at 0.1 A g−1 is achieved by producing Li‐rich phase through combined synergistic effects of amorphous phases with interface modification design for fully utilizing highly spin‐polarized surface capacitance. Furthermore, it is demonstrated that large surface area can effectively facilitate Li‐ion kinetics, and the formation of interconnected conductive networks improves the electrical conductivity and structural stability by alleviating volume expansion. This leads to a high rate capability of 412.3 mAh g−1 even at an extremely high current density of 10 A g−1 and stable cyclic stability with a capacity up to 921.9 mAh g−1 at 2 A g−1 after 500 cycles. This study can help to overcome theoretically limited electrochemical properties of conventional metal oxide materials, providing a new insight into the rational design with surface alteration to boost Li‐ion storage capacity.

Keywords: self hybridization; capacity; replacement derived; theoretical capacity; galvanic replacement; ion

Journal Title: Advanced Functional Materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.