LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllably Switched Drug Release from Successively Dual‐Targeted Nanoreservoirs

Photo from wikipedia

The development of a nanocarrier with a capacity of releasing therapeutic agent "on demand" is of great importance for enhancing drug efficacy and reducing its side effect. Here, a multifunctional… Click to show full abstract

The development of a nanocarrier with a capacity of releasing therapeutic agent "on demand" is of great importance for enhancing drug efficacy and reducing its side effect. Here, a multifunctional mesoporous silica nanoparticle is presented for cancer therapy. This nanoparticle can not only successively target tumor tissue and tumor cells but also has a function of controllably switching the drug release. Low molecular weight poly(ethyleneimine) segments, which are decorated on the surface of magnetic mesoporous silica nanoparticle with disulfide bonds, are chemically cross-linked, leading to the mesopores being "closed" in blood circulation but being "open" via taking off the coating in cytoplasm. As a result, the encapsulated drug can be kept in nanoparticles in the normal conditions, while be rapidly released in a reduction condition. In vivo antitumor activity demonstrates that this nanoparticle has the highest safety to body and the best therapeutic efficacy against tumors. Therefore, this work presents a good example of rational design of nanocarriers for highly effective cancer therapy.

Keywords: controllably switched; drug; drug release; release successively; switched drug

Journal Title: Advanced Healthcare Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.