LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atmospheric Plasma Deposition of Methacrylate Layers Containing Catechol/Quinone Groups: An Alternative to Polydopamine Bioconjugation for Biomedical Applications

Photo from wikipedia

Bioconjugation of enzymes on coatings based on polydopamine (PDA) layers is an appealing approach to control biological responses on biomedical implant surfaces. As alternative to PDA wet deposition, a fast,… Click to show full abstract

Bioconjugation of enzymes on coatings based on polydopamine (PDA) layers is an appealing approach to control biological responses on biomedical implant surfaces. As alternative to PDA wet deposition, a fast, solvent-free, and dynamic deposition approach based on atmospheric-pressure plasma dielectric barrier discharge process is considered to deposit on metallic surfaces acrylic-based interlayers containing highly chemically reactive catechol/quinone groups. A biomimetic approach based on covalent immobilization of Dispersin B, an enzyme with antibiofilm properties, shows the bioconjugation potential of the novel plasma polymer layers. The excellent antibiofilm activity against Staphylococcus epidermidis is comparable to the PDA-based layers prepared by wet chemical methods with slow deposition rates. A study of preosteoblastic MG-63 human cell line viability and adhesion properties on plasma polymer layers demonstrates early interaction required for biomedical applications.

Keywords: quinone groups; bioconjugation; plasma; deposition; catechol quinone; biomedical applications

Journal Title: Advanced Healthcare Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.