LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-small Albumin Templated Gd/Ru Composite Nanodots for In Vivo Dual modal MR/Thermal Imaging Guided Photothermal Therapy.

Photo from wikipedia

Multifunctional theranostic nanoagents which realize precise diagnosis and treatment of tumors are attracting increasing interests in recent years. However, efficient and controlled synthesis of ultra-small noble metal nanoagents remains a… Click to show full abstract

Multifunctional theranostic nanoagents which realize precise diagnosis and treatment of tumors are attracting increasing interests in recent years. However, efficient and controlled synthesis of ultra-small noble metal nanoagents remains a challenge. Here, monodisperse Gd/Ru@BSA nanodots (GRBNDs) are successfully fabricated via a totally "green", "one-pot" protocol for in situ reduction of Ru(III) and biomineralization of Gd(III) in the presence of albumin. The as-prepared nanoagent possesses the features of being ultra small in size (≈6.7 nm), having strong colloidal stability, and thermal stability as well as high photothermal conversion efficiency (η = 50.7%). As expected, the GRBNDs achieve a significant efficacy of anticancer therapy under LASER activation both in vitro and in vivo. It also exhibits superior T1 -weighted magnetic resonance (MR) imaging ability due to its high longitudinal relaxivity value (r1 = 10.98 × 10-3 m-1 s-1 ). Moreover, it is demonstrated to be renal clearable with negligible systemic toxicity. This work highlights a straightforward and repeatable approach for synthesizing highly effective and multifunctional noble metal nanoagent of great clinical promising for cancer theranostics.

Keywords: small albumin; albumin templated; imaging; albumin; therapy; ultra small

Journal Title: Advanced healthcare materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.