LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Localized Controlled Delivery of Gemcitabine via Microsol Electrospun Fibers to Prevent Pancreatic Cancer Recurrence

Photo from wikipedia

The low radical surgery rate of pancreatic cancer leads to increased local recurrence and poor prognosis. Gemcitabine (GEM) is the preferred chemotherapeutic for pancreatic cancer. However, systemic chemotherapy with GEM… Click to show full abstract

The low radical surgery rate of pancreatic cancer leads to increased local recurrence and poor prognosis. Gemcitabine (GEM) is the preferred chemotherapeutic for pancreatic cancer. However, systemic chemotherapy with GEM has reached a bottleneck due to its serious side effects after frequent injections. In this study, GEM is successfully enwrapped into electrospun fibers via microsol electrospinning technology to form a stable core-shell fibrous structure. The GEM release rate can be adjusted by altering the thickness of the hyaluronan-sol inner fiber and the quantity of loaded GEM, and the release can be sustained for as long as three weeks. In vitro assays show that these electrospun fibers effectively inhibit pancreatic cancer cells and promote apoptosis. In vivo studies show that the fibrous membranes are better for inhibiting the growth of residual tumors than that of integrated tumors. Furthermore, immunohistochemistry results show that GEM-loaded fibers promote a higher cell apoptosis rate than does systemically injected GEM in residual tumors. In addition, the local delivery of GEM with fibers significantly reduces liver toxicity. In summary, a core-shell electrospun fiber for the controlled and localized delivery of GEM, which greatly improves the treatment of residual tumors and prevents pancreatic tumor recurrence, is developed.

Keywords: gem; recurrence; delivery; electrospun fibers; pancreatic cancer

Journal Title: Advanced Healthcare Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.