LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars.

Photo by sharonmccutcheon from unsplash

Hypertrophic scarring (HS) remains a great challenge in wound dressing. Although various bionic extracellular matrix (ECM) biomaterials have been designed towards HS treatment, not all biomaterials can synergize biological functions… Click to show full abstract

Hypertrophic scarring (HS) remains a great challenge in wound dressing. Although various bionic extracellular matrix (ECM) biomaterials have been designed towards HS treatment, not all biomaterials can synergize biological functions and application functions in wound repair. Bionic scar-inhibiting scaffolds, loaded with biomolecules or drugs, become promising strategies for scarless skin regeneration. In this work, inspired by the physicochemical environment of ECM, a versatile fabrication of poly(γ-glutamic acid) based on electrospun photocrosslinkable hydrogel fibrous scaffolds incorporated with ginsenoside Rg3 (GS-Rg3) is developed for tissue repair and wound therapy. Decorated with adhesive peptide, bionic fibrous scaffolds can accelerate fibroblasts to sprout and grow, forming organized space-filling basement that gradually fills a depression before wound close up in the early stage. Additionally, by sustained release of GS-Rg3 in late stage, fibrous scaffolds promote scarless wound healing in vivo as evidenced by the promotion of cell communication and skin regeneration, as well as the subsequent decrease of angiogenesis and collagen accumulation. These ECM-inspired fibrous scaffolds, therefore, offer new perspectives on accelerated wound healing and tissue regeneration.

Keywords: acid electrospun; poly glutamic; glutamic acid; fibrous scaffolds; bionic poly

Journal Title: Advanced healthcare materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.