LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Composite Hydrogel Scaffold Permits Self-Organization and Matrix Deposition by Cocultured Human Glomerular Cells.

Photo from wikipedia

3D scaffolds provide cells with a spatial environment that more closely resembles that of in vivo tissue, when compared to 2D culture on a plastic substrate. However, many scaffolding materials… Click to show full abstract

3D scaffolds provide cells with a spatial environment that more closely resembles that of in vivo tissue, when compared to 2D culture on a plastic substrate. However, many scaffolding materials commonly used in tissue engineering tend to exhibit anisotropic morphologies that exhibit a narrow range of fiber diameters and pore sizes, which do not recapitulate extracellular matrices. In this study, a fibrin hydrogel is formed within the interstitial spaces of an electrospun poly(glycolic) acid (PGA) monolith to generate a composite, bimodal scaffold for the coculture of kidney glomerular cell lines. This new scaffold exhibits multiple fiber morphologies, containing both PGA microfibers (14.5 ± 2 µm) and fibrin gel nanofibers (0.14 ± 0.09 µm), which increase the compressive Young's modulus beyond that of either of the constituents. The composite structure provides an enhanced 3D environment that increases proliferation and adhesion of immortalized human podocytes and glomerular endothelial cells. Moreover, the micro/nanoscale fibrous morphology promotes motility and reorganization of the glomerular cells into glomerulus-like structures, resulting in the deposition of organized collagen IV; the primary component of the glomerular basement membrane (GBM).

Keywords: hydrogel; hydrogel scaffold; composite hydrogel; glomerular cells; deposition; scaffold permits

Journal Title: Advanced healthcare materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.