LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics.

Photo from wikipedia

Extracellular vesicles (EVs) are small vesicles secreted by cells and have gained increasing interest as both drug delivery vehicles or as cell-free therapeutics for regenerative medicine. To achieve optimal therapeutic… Click to show full abstract

Extracellular vesicles (EVs) are small vesicles secreted by cells and have gained increasing interest as both drug delivery vehicles or as cell-free therapeutics for regenerative medicine. To achieve optimal therapeutic effects, strategies are being developed to prolong EV exposure to target organs. One promising approach to achieve this is through EV-loaded injectable hydrogels. In this study, the use of a hydrogel based on ureido-pyrimidinone (UPy) units coupled to poly(ethylene glycol) chains (UPy-hydrogel) is examined as potential delivery platform for EVs. The UPy-hydrogel undergoes a solution-to-gel transition upon switching from a high to neutral pH, allowing immediate gelation upon administration into physiological systems. Here, sustained EV release from the UPy-hydrogel measured over a period of 4 d is shown. Importantly, EVs retain their functional capacity after release. Upon local administration of fluorescently labeled EVs incorporated in a UPy-hydrogel in vivo, EVs are still detected in the UPy-hydrogel after 3 d, whereas in the absence of a hydrogel, EVs are internalized by fat and skin tissue near the injection site. Together, these data demonstrate that UPy-hydrogels provide sustained EV release over time and enhance local EV retention in vivo, which could contribute to improved therapeutic efficacy upon local delivery and translation toward new applications.

Keywords: provide sustained; hydrogel; hydrogels provide; sustained release; upy hydrogel; release

Journal Title: Advanced healthcare materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.