LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Organic Nanotherapeutic Agent Self-Assembled from Cyanine and Cu (II) for Combined Photothermal and Chemodynamic Therapy.

Photo by finnnyc from unsplash

Although the combination of photothermal/chemodynamic therapy (PTT/CDT) based on various inorganic nanomaterials has promising anticancer effects, poor biocompatibility and biodegradability of inorganic nanoplatforms pose obstacles to their use in clinic.… Click to show full abstract

Although the combination of photothermal/chemodynamic therapy (PTT/CDT) based on various inorganic nanomaterials has promising anticancer effects, poor biocompatibility and biodegradability of inorganic nanoplatforms pose obstacles to their use in clinic. On the contrary, nanoscale metal-organic particles are considered to be a promising platform because of their biocompatibility and efficient metabolism. Herein, HA@Cy-Cu NPs are prepared using the coordination-driven assembly of cyanine dyes with Cu2+ ions. HA@Cy-Cu NPs demonstrate excellent synergistic PTT/CDT, a high photothermal conversion efficiency (43%), and enhanced photostability. Moreover, Cu2+ in the NPs can be reduced to Cu+ by glutathione (GSH) and can transform H2 O2 to •OH, which down-regulates intracellular GSH levels and up-regulates significant oxidative damage. Therefore, promising in vivo tumor ablation is observed at a low dose of HA@Cy-Cu, suggesting that the combination of PTT/CDT greatly improved the antitumor performance. HA@Cy-Cu can further improve organic nano-systems for anti-tumor therapy by integrating PTT and CDT.

Keywords: organic nanotherapeutic; ptt cdt; chemodynamic therapy; photothermal chemodynamic; therapy

Journal Title: Advanced healthcare materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.