LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailored Biocompatible Polyurethane‐Poly(ethylene glycol) Hydrogels as a Versatile Nonfouling Biomaterial

Photo from wikipedia

Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a… Click to show full abstract

Polyurethane‐based hydrogels are relatively inexpensive and mechanically robust biomaterials with ideal properties for various applications, including drug delivery, prosthetics, implant coatings, soft robotics, and tissue engineering. In this report, a simple method is presented for synthesizing and casting biocompatible polyurethane‐poly(ethylene glycol) (PU‐PEG) hydrogels with tunable mechanical properties, nonfouling characteristics, and sustained tolerability as an implantable material or coating. The hydrogels are synthesized via a simple one‐pot method using commercially available precursors and low toxicity solvents and reagents, yielding a consistent and biocompatible gel platform primed for long‐term biomaterial applications. The mechanical and physical properties of the gels are easily controlled by varying the curing concentration, producing networks with complex shear moduli of 0.82–190 kPa, similar to a range of human soft tissues. When evaluated against a mechanically matched poly(dimethylsiloxane) (PDMS) formulation, the PU‐PEG hydrogels demonstrated favorable nonfouling characteristics, including comparable adsorption of plasma proteins (albumin and fibrinogen) and significantly reduced cellular adhesion. Moreover, preliminary murine implant studies reveal a mild foreign body response after 41 days. Due to the tunable mechanical properties, excellent biocompatibility, and sustained in vivo tolerability of these hydrogels, it is proposed that this method offers a simplified platform for fabricating soft PU‐based biomaterials for a variety of applications.

Keywords: biocompatible polyurethane; poly ethylene; ethylene glycol; poly; polyurethane poly; polyurethane

Journal Title: Advanced Healthcare Materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.