LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DPA-Zinc around Polyplexes Acts Like PEG to Reduce Protein Binding while Targeting Cancer Cells.

Photo from wikipedia

Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes… Click to show full abstract

Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions.Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, we report that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface could achieve high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape. This article is protected by copyright. All rights reserved.

Keywords: binding targeting; protein binding; targeting cancer; gene; reduce protein

Journal Title: Advanced healthcare materials
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.