LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrahigh-Conductivity Polymer Hydrogels with Arbitrary Structures.

Photo from wikipedia

A poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) hydrogel is prepared by thermal treatment of a commercial PEDOT:PSS (PH1000) suspension in 0.1 mol L-1 sulfuric acid followed by partially removing its PSS component with concentrated… Click to show full abstract

A poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) hydrogel is prepared by thermal treatment of a commercial PEDOT:PSS (PH1000) suspension in 0.1 mol L-1 sulfuric acid followed by partially removing its PSS component with concentrated sulfuric acid. This hydrogel has a low solid content of 4% (by weight) and an extremely high conductivity of 880 S m-1 . It can be fabricated into different shapes such as films, fibers, and columns with arbitrary sizes for practical applications. A highly conductive and mechanically strong porous fiber is prepared by drying PEDOT:PSS hydrogel fiber to fabricate a current-collector-free solid-state flexible supercapacitor. This fiber supercapacitor delivers a volumetric capacitance as high as 202 F cm-3 at 0.54 A cm-3 with an extraordinary high-rate performance. It also shows excellent electrochemical stability and high flexibility, promising for the application as wearable energy-storage devices.

Keywords: conductivity polymer; hydrogels arbitrary; conductivity; pedot pss; ultrahigh conductivity; polymer hydrogels

Journal Title: Advanced materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.