LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wafer-Scale Synthesis of Reliable High-Mobility Molybdenum Disulfide Thin Films via Inhibitor-Utilizing Atomic Layer Deposition.

Photo from wikipedia

A reliable and rapid manufacturing process of molybdenum disulfide (MoS2 ) with atomic-scale thicknesses remains a fundamental challenge toward its successful incorporation into high-performance nanoelectronics. It is imperative to achieve… Click to show full abstract

A reliable and rapid manufacturing process of molybdenum disulfide (MoS2 ) with atomic-scale thicknesses remains a fundamental challenge toward its successful incorporation into high-performance nanoelectronics. It is imperative to achieve rapid and scalable production of MoS2 exhibiting high carrier mobility and excellent on/off current ratios simultaneously. Herein, inhibitor-utilizing atomic layer deposition (iALD) is presented as a novel method to meet these requirements at the wafer scale. The kinetics of the chemisorption of Mo precursors in iALD is governed by the reaction energy and the steric hindrance of inhibitor molecules. By optimizing the inhibition of Mo precursor absorption, the nucleation on the substrate in the initial stage can be spontaneously tailored to produce iALD-MoS2 thin films with a significantly increased grain size and surface coverage (>620%). Moreover, highly crystalline iALD-MoS2 thin films, with thicknesses of only a few layers, excellent room temperature mobility (13.9 cm2 V-1 s-1 ), and on/off ratios (>108 ), employed as the channel material in field effect transistors on 6″ wafers, are successfully prepared.

Keywords: thin films; utilizing atomic; mobility; inhibitor utilizing; molybdenum disulfide

Journal Title: Advanced materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.