Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Although recent advances in electrocatalysts have been achieved using various material designs such… Click to show full abstract
Fuel cells are one of the promising energy-conversion devices due to their high efficiency and zero emission. Although recent advances in electrocatalysts have been achieved using various material designs such as alloys, core@shell structures, and shape control, many issues still remain to be resolved. Especially, material design issues for high durability and high activity are recently accentuated owing to severe instability of nanoparticles under fuel-cell operating conditions. To address these issues, fundamental understanding of functional links between activity and durability is timely urgent. Here, the activity and durability of nanoscale materials are summarized, focusing on the nanoparticle size effect. In addition to phenomenological observation, two major degradation origins, including atomic dissolution and particle size increase, are discussed related to the activity decrease. Based on the fundamental understanding of nanoparticle degradation, recent promising strategies for durable Pt-based nanoscale electrocatalysts are introduced and the role of each design for durability enhancement is discussed. Finally, short comments related to the future direction of nanoparticle issues are provided in terms of nanoparticle synthesis and analysis.
               
Click one of the above tabs to view related content.