LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Metal-Organic Framework with Optimized Porosity and Functional Sites for High Gravimetric and Volumetric Methane Storage Working Capacities.

Photo from wikipedia

Extensive research has been devoted to developing new porous materials with high methane storage capacity. While great progress has been made in recent years, it still remains very challenging to… Click to show full abstract

Extensive research has been devoted to developing new porous materials with high methane storage capacity. While great progress has been made in recent years, it still remains very challenging to target simultaneously high gravimetric and volumetric methane (CH4 ) working capacities (deliverable amount between 5.8 and 65 bar) in a single material. Here, a novel metal-organic framework (termed as UTSA-110a) constructed by an extended linker containing a high density of functional nitrogen sites, exhibiting both very high gravimetric and volumetric working capacities of 317 cm3 (STP: 273.15 K, 1 atm) g-1 and 190 cm3 (STP) cm-3 , respectively, for robust MOFs, is reported. Both of these values are higher than those of two benchmark materials: HKUST-1 (207 cm3 (STP) g-1 or 183 cm3 (STP) cm-3 ) and UTSA-76a (267 cm3 (STP) g-1 or 187 cm3 (STP) cm-3 ). Computational studies reveal that it is the combination of optimized porosity and favorable binding sites that leads to the simultaneously high gravimetric and volumetric working capacities in this material.

Keywords: cm3 stp; high gravimetric; gravimetric volumetric; working capacities; methane

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.