LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Light Harvesting, Self-Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI3 Perovskite.

Photo by drew_hays from unsplash

Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric… Click to show full abstract

Organolead trihalide perovskite MAPbI3 shows a distinctive combination of properties such as being ferroelectric and semiconducting, with ion migration effects under poling by electric fields. The combination of its ferroelectric and semiconducting nature is used to make a light harvesting, self-powered tactile sensor. This sensor interfaces ZnO nanosheets as a pressure-sensitive drain on the MAPbI3 film and once poled is operational for at least 72 h with just light illumination. The sensor is monolithic in structure, has linear response till 76 kPa, and is able to operate continuously as the energy harvesting mechanism is decoupled from its pressure sensing mechanism. It has a sensitivity of 0.57 kPa-1 , which can be modulated by the strength of the poling field. The understanding of these effects in perovskite materials and their application in power source free devices are of significance to a wide array of fields where these materials are being researched and applied.

Keywords: light harvesting; self powered; field; tactile sensor; sensor; harvesting self

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.