LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

Photo by max_thehuman from unsplash

Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in… Click to show full abstract

Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance.

Keywords: precisely controllable; doping mote2; electrothermal doping; mote2 transistors; type doping; type

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.