LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic-Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis.

Photo from wikipedia

Tuning surface strain is a new strategy for boosting catalytic activity to achieve sustainable energy supplies; however, correlating the surface strain with catalytic performance is scarce because such mechanistic studies… Click to show full abstract

Tuning surface strain is a new strategy for boosting catalytic activity to achieve sustainable energy supplies; however, correlating the surface strain with catalytic performance is scarce because such mechanistic studies strongly require the capability of tailoring surface strain on catalysts as precisely as possible. Herein, a conceptual strategy of precisely tuning tensile surface strain on Co9 S8 /MoS2 core/shell nanocrystals for boosting the hydrogen evolution reaction (HER) activity by controlling the MoS2 shell numbers is demonstrated. It is found that the tensile surface strain of Co9 S8 /MoS2 core/shell nanocrystals can be precisely tuned from 3.5% to 0% by changing the MoS2 shell layer from 5L to 1L, in which the strained Co9 S8 /1L MoS2 (3.5%) exhibits the best HER performance with an overpotential of only 97 mV (10 mA cm-2 ) and a Tafel slope of 71 mV dec-1 . The density functional theory calculation reveals that the Co9 S8 /1L MoS2 core/shell nanostructure yields the lowest hydrogen adsorption energy (∆EH ) of -1.03 eV and transition state energy barrier (∆E2H* ) of 0.29 eV (MoS2 , ∆EH = -0.86 eV and ∆E2H* = 0.49 eV), which are the key in boosting HER activity by stabilizing the HER intermediate, seizing H ions, and releasing H2 gas.

Keywords: core shell; mos2; surface strain; shell; strain

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.