LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Stable Indocyanine Green (ICG)-Mediated Cancer Optotheranostics with Naturalized Hepatitis B Core Particles.

Photo by chatelp from unsplash

In recent years, hepatitis B core protein virus-like particle (HBc VLP) is an impressive biomaterial, which has attracted considerable attention due to favorable properties such as structural stability, high uptake… Click to show full abstract

In recent years, hepatitis B core protein virus-like particle (HBc VLP) is an impressive biomaterial, which has attracted considerable attention due to favorable properties such as structural stability, high uptake efficiency, and biocompatibility in biomedical applications. Heretofore, only a few attempts have been made to apply it in physical, chemical, and biological therapy for cancer. In this study, a tumor-targeting RGD-HBc VLP is first fabricated through genetic engineering. For image-guided cancer phototherapy, indocyanine green (ICG) is loaded into RGD-HBc VLP via a disassembly/reassembly pathway and electrostatic attraction with high efficiency. The self-assembled stable RGD-HBc VLP significantly improves body retention (fourfold longer), aqueous stability, and target specificity of ICG. Remarkably, these positive reformations promote more accurate and sensitive imaging of U87MG tumor, as well as prolonged tumor destruction in comparison with free ICG. Moreover, the photothermal and photodynamic effect on tumors are quantitatively differentiated by multiple linear regression analysis. Overall, less-potent medicinal ICG can be perfectly rescued by bioengineered HBc VLP to realize enhanced cancer optotheranostics.

Keywords: hbc vlp; indocyanine green; icg; hepatitis core; cancer

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.