LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics.

Photo by drew_hays from unsplash

Neuromorphic computing represents an innovative technology that can perform intelligent and energy-efficient computation, whereas construction of neuromorphic systems requires biorealistic synaptic elements with rich dynamics that can be tuned based… Click to show full abstract

Neuromorphic computing represents an innovative technology that can perform intelligent and energy-efficient computation, whereas construction of neuromorphic systems requires biorealistic synaptic elements with rich dynamics that can be tuned based on a robust mechanism. Here, an ionic-gating-modulated synaptic transistor based on layered crystals of transitional metal dichalcogenides and phosphorus trichalcogenides is demonstrated, which produce a diversity of short-term and long-term plasticity including excitatory postsynaptic current, paired pulse facilitation, spiking-rate-dependent plasticity, dynamic filtering, etc., with remarkable linearity and ultralow energy consumption of ≈30 fJ per spike. Detailed transmission electron microscopy characterization and ab initio calculation reveal two-stage ionic gating effects, namely, surface adsorption and internal intercalation in the channel medium, causing different poststimulation diffusive dynamics and thus accounting for the observed short-term and long-term plasticity, respectively. The synaptic activity can therefore be effectively manipulated by tailoring the ionic gating and consequent diffusion dynamics with varied thickness and structure of the van der Waals material as well as the number, duration, rate, and polarity of gate stimulations, making the present synaptic transistors intriguing candidates for low-power neuromorphic systems.

Keywords: synaptic transistors; diffusive dynamics; van der; term; der waals

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.