LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures.

Photo from wikipedia

Recent developments of a novel class of catalytic materials built on hollow nanocrystals having ultrathin, porous walls, and well-controlled surface structures are discussed, with a focus on platinum and the… Click to show full abstract

Recent developments of a novel class of catalytic materials built on hollow nanocrystals having ultrathin, porous walls, and well-controlled surface structures are discussed, with a focus on platinum and the oxygen reduction reaction (ORR). An introduction is given to the critical role of platinum in the proton exchange membrane fuel cells, and the pressing need to develop a strategy for achieving cost-effective and sustainable use of this precious metal. How to maximize the mass activity of ORR catalysts based on platinum by rationally engineering the surface structure while increasing the utilization efficiency of atoms is then discussed. After reporting on the synthetic methods involving galvanic replacement and seed-mediated growth followed by etching, respectively, a number of examples to demonstrate the enhancement in activity and durability for this new class of catalytic materials are showcased. The feasibility to have the methodology extended from platinum to other precious metals such as gold and ruthenium is highlighted. In conclusion, some of the remaining issues and emerging solutions are examined.

Keywords: porous walls; well controlled; surface; nanocrystals ultrathin; ultrathin porous; walls well

Journal Title: Advanced materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.