The electrochemical reduction of N2 into NH3 production under ambient conditions represents an attractive prospect for the fixation of N2 . However, this process suffers from low yield rate of… Click to show full abstract
The electrochemical reduction of N2 into NH3 production under ambient conditions represents an attractive prospect for the fixation of N2 . However, this process suffers from low yield rate of NH3 over reported electrocatalysts. In this work, a record-high activity for N2 electrochemical reduction over Ru single atoms distributed on nitrogen-doped carbon (Ru SAs/N-C) is reported. At -0.2 V versus reversible hydrogen electrode, Ru SAs/N-C achieves a Faradaic efficiency of 29.6% for NH3 production with partial current density of -0.13 mA cm-2 . Notably, the yield rate of Ru SAs/N-C reaches 120.9 μgNH3 mgcat.-1 h-1, which is one order of magnitude higher than the highest value ever reported. This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single-atom catalysts.
               
Click one of the above tabs to view related content.