LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial.

Photo by drew_hays from unsplash

Electrostriction is a property of all naturally occurring dielectrics whereby they are mechanically deformed under the application of an electric field. It is demonstrated here that an artificial metamaterial nanostructure… Click to show full abstract

Electrostriction is a property of all naturally occurring dielectrics whereby they are mechanically deformed under the application of an electric field. It is demonstrated here that an artificial metamaterial nanostructure comprising arrays of dielectric nanowires, made of silicon and indium tin oxide, is reversibly structurally deformed under the application of an electric field, and that this reconfiguration is accompanied by substantial changes in optical transmission and reflection, thus providing a strong electro-optic effect. Such metamaterials can be used as the functional elements of electro-optic modulators in the visible to near-infrared part of the spectrum. A modulator operating at 1550 nm with effective electrostriction and electro-optic coefficients of order 10-13 m2 V-2 and 10-6 m V-1 , respectively, is demonstrated. Transmission changes of up to 3.5% are obtained with a 500 mV control signal at a modulation frequency of ≈6.5 MHz. With a resonant optical response that can be spectrally tuned by design, modulators based on the artificial electrostrictive effect may be used for laser Q-switching and mode-locking among other applications that require modulation at megahertz frequencies.

Keywords: optical effect; electro optic; electro optical; effect; giant electro; electrostriction

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.