LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A High-Performance Self-Regenerating Solar Evaporator for Continuous Water Desalination.

Photo from wikipedia

Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar-to-vapor efficiency, low environmental impact, and off-grid capability. However, solute accumulation… Click to show full abstract

Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar-to-vapor efficiency, low environmental impact, and off-grid capability. However, solute accumulation at the heating interface has severely impacted the performance and long-term stability of current solar evaporation systems. Here, a self-regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel-array in a natural wood substrate is reported. Upon solar evaporation, salt concentration gradients are formed between the millimeter-sized drilled channels (with a low salt concentration) and the microsized natural wood channels (with a high salt concentration) due to their different hydraulic conductivities. The concentration gradients allow spontaneous interchannel salt exchange through the 1-2 µm pits, leading to the dilution of salt in the microsized wood channels. The drilled channels with high hydraulic conductivities thus function as salt-rejection pathways, which can rapidly exchange the salt with the bulk solution, enabling the real-time self-regeneration of the evaporator. Compared to other salt-rejection designs, the solar evaporator exhibits the highest efficiency (≈75%) in a highly concentrated salt solution (20 wt% NaCl) under 1 sun irradiation, as well as long-term stability (over 100 h of continuous operation).

Keywords: solar evaporator; evaporator; salt; regenerating solar; desalination; self regenerating

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.