LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Systematic Control of the Orientation of Organic Phosphorescent Pt Complexes in Thin Films for Increased Optical Outcoupling.

Photo from wikipedia

Orienting light-emitting molecules relative to the substrate is an effective method to enhance the optical outcoupling of organic light-emitting devices. Platinum(II) phosphorescent complexes enable facile control of the molecular alignment… Click to show full abstract

Orienting light-emitting molecules relative to the substrate is an effective method to enhance the optical outcoupling of organic light-emitting devices. Platinum(II) phosphorescent complexes enable facile control of the molecular alignment due to their planar structures. Here, the orientation of Pt(II) complexes during the growth of emissive layers is controlled by two different methods: modifying the molecular structure and using structural templating. Molecules whose structures are modified by adjusting the diketonate ligand of the Pt complex, dibenzo-(f,h)quinoxaline Pt dipivaloylmethane, (dbx)Pt(dpm), show an ≈20% increased fraction of horizontally aligned transition dipole moments compared to (dbx)Pt(dpm) doped into a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, CBP, host. Alternatively, a template composed of highly ordered 3,4,9,10-perylenetetracarboxylic dianhydride monolayers is predeposited to drive the alignment of a subsequently deposited emissive layer comprising (2,3,7,8,12,13,17,18-octaethyl)-21H,23H-porphyrinplatinum(II) doped into triindolotriazine. This results in a 60% increase in horizontally aligned transition dipole moments compared to the film deposited in the absence of the template. The findings provide a systematic route for controlling molecular alignment during layer growth, and ultimately to increase the optical outcoupling in organic light-emitting diodes.

Keywords: optical outcoupling; light emitting; phosphorescent complexes; systematic control

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.