LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tunable Hydrophile-Lipophile Balance for Manipulating Structural Stability and Tumor Retention of Amphiphilic Nanoparticles.

Photo by hautier from unsplash

Hydrophile-lipophile balance (HLB) has a great influence on the self-assembly and physicochemical properties of amphiphiles, thus affecting their biological effects. It is shown that amphiphilic nanoparticles (NPs) with a moderate… Click to show full abstract

Hydrophile-lipophile balance (HLB) has a great influence on the self-assembly and physicochemical properties of amphiphiles, thus affecting their biological effects. It is shown that amphiphilic nanoparticles (NPs) with a moderate HLB value display enhanced stability and highly efficient tumor retention. 2,2-Bis(hydroxymethyl)propionic acid hyperbranched poly(ethylene glycol) (PEG)-pyropheophorbide-a (Ppa) amphiphiles (G320P, G310P, G220P, and G210P) are synthesized with a tunable HLB value from 6.1 to 9.9 by manipulating the number of generation of dendrons (G2 or G3) and the molecular weight of PEG chains (10 or 20 kDa). Molecular dynamics simulations reveal that G320P and G210P with a moderate HLB value (8.0 and 7.8) self-assemble into very stable NPs with a small solvent accessible surface area and high nonbonding interactions. G320P with a moderate HLB value (8.0) and a long PEG chain excels against other NPs in prolonging the blood circulation time of Ppa (up to 13-fold), penetrating deeply into multicellular tumor spheroids and accumulating in tumors, and enhancing the PDT efficacy with a tumor growth inhibition of 96.0%. Rational design of NPs with a moderate HLB value may be implemented in these NP-derived nanomedicines to achieve high levels of retention in tumors.

Keywords: hlb value; lipophile balance; retention; hydrophile lipophile; tumor

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.