Chiral inorganic nanomaterials have recently attracted significant attention because of their many important applications, such as in asymmetric catalysis and chiral sensing. Here, chiral iron disulfide quantum dots (FeS2 QDs)… Click to show full abstract
Chiral inorganic nanomaterials have recently attracted significant attention because of their many important applications, such as in asymmetric catalysis and chiral sensing. Here, chiral iron disulfide quantum dots (FeS2 QDs) are synthesized via chirality transfer using l/d-cysteine (Cys) as chiral ligands. The chiral FeS2 QDs are coassembled with two gelators to produce a cogel (l- or d-[Gel+FeS2 ]) with a g-factor value of ±0.06. Interestingly, the cogels display intense circularly polarized luminescence. More significantly, the degree of twisting (twist pitch) and the diameter of the cogels can be markedly regulated by illumination with circularly polarized light (CPL) in the ranges of 120-213 and 37-65 nm, respectively, which is caused by the CPL-induced electron transfer. This research opens the way for the design of chiroptical devices with a wide range of functions and applications.
               
Click one of the above tabs to view related content.