LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemically Tuned p- and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics.

Photo from wikipedia

Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post-silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom-thick 2D structure. With the… Click to show full abstract

Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post-silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom-thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p- and n-type semiconductors is essential for various device applications, such as complementary metal-oxide-semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4-nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field-effect transistors (FETs) to p- and n-type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm2 V-1 s-1 for holes and electrons, respectively, which are much higher than those of the pristine WSe2 . The doping effects are studied by photoluminescence, Raman, X-ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption (≈0.17 nW). Furthermore, a p-n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC-based advanced electronics.

Keywords: chemically tuned; advanced electronics; wse2; carrier; carrier mobility; high carrier

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.