Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials… Click to show full abstract
Self-healing ability is an important survival feature in nature, with which living beings can spontaneously repair damage when wounded. Inspired by nature, people have designed and synthesized many self-healing materials by encapsulating healing agents or incorporating reversible covalent bonds or noncovalent interactions into a polymer matrix. Among the noncovalent interactions, the coordination bond is demonstrated to be effective for constructing highly efficient self-healing polymers. Moreover, with the presence of functional metal ions or ligands and dynamic metal-ligand bonds, self-healing polymers can show various functions such as dielectrics, luminescence, magnetism, catalysis, stimuli-responsiveness, and shape-memory behavior. Herein, the recent developments and achievements made in the field of self-healing polymers based on coordination bonds are presented. The advantages of coordination bonds in constructing self-healing polymers are highlighted, the various metal-ligand bonds being utilized in self-healing polymers are summarized, and examples of functional self-healing polymers originating from metal-ligand interactions are given. Finally, a perspective is included addressing the promises and challenges for the future development of self-healing polymers based on coordination bonds.
               
Click one of the above tabs to view related content.