In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable… Click to show full abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
               
Click one of the above tabs to view related content.