LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detrimental Effect of Unreacted PbI2 on the Long-Term Stability of Perovskite Solar Cells.

Photo from wikipedia

Excess/unreacted lead iodide (PbI2 ) has been commonly used in perovskite films for the state-of-the-art solar cell applications. However, an understanding of intrinsic degradation mechanisms of perovskite solar cells (PSCs)… Click to show full abstract

Excess/unreacted lead iodide (PbI2 ) has been commonly used in perovskite films for the state-of-the-art solar cell applications. However, an understanding of intrinsic degradation mechanisms of perovskite solar cells (PSCs) containing unreacted PbI2 has been still insufficient and, therefore, needs to be clarified for better operational durability. Here, it is shown that degradation of PSCs is hastened by unreacted PbI2 crystals under continuous light illumination. Unreacted PbI2 undergoes photodecomposition under illumination, resulting in the formation of lead and iodine in films. Thus, this photodecomposition of PbI2 is one of the main reasons for accelerated device degradation. Therefore, this work reveals that carefully controlling the formation of unreacted PbI2 crystals in perovskite films is very important to improve device operational stability for diverse opto-electronic applications in the future.

Keywords: pbi2; detrimental effect; perovskite solar; unreacted pbi2; stability; solar cells

Journal Title: Advanced materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.