LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Efficient Clean Water Production from Contaminated Air with a Wide Humidity Range.

Photo from wikipedia

The huge amount of moisture in the air is an unexplored and overlooked water resource in nature, which can be useful to solve the worldwide water shortage. However, direct water… Click to show full abstract

The huge amount of moisture in the air is an unexplored and overlooked water resource in nature, which can be useful to solve the worldwide water shortage. However, direct water condensation from natural or even hazy air is always inefficient and inevitably contaminated by numerous impurities of dust, toxic gas, and microorganisms. In this regard, a drinkable and clean water harvester from complex contaminated air with a wide humidity range based on porous sodium polyacrylate/graphene framework (PGF), which can actively sorb moisture from common or even smoggy environments, efficiently grabs impurities, and then releases clean water with a high rejection rate of impurities under solar irradiation, is proposed. This PGF shows a superhigh equilibrium uptake of 5.20 g of water per gram of PGF at a relative humidity (RH) of 100% and 0.14 g g-1 at a low RH of 15%. The rejection rate of impurities is up to 97% for the collected clean water. Moreover, a water harvesting system is established to produce over 25 L clean water per kilogram of PGF one day, enough to meet several people's drinking water demand. This work provides a new strategy for effective production of clean water from the atmosphere of practical significance.

Keywords: clean water; water; contaminated air; air wide; humidity

Journal Title: Advanced materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.