LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A General Method for Transition Metal Single Atoms Anchored on Honeycomb-Like Nitrogen-Doped Carbon Nanosheets.

Photo from wikipedia

Excavating and developing highly efficient and cost-effective nonnoble metal single-atom catalysts for electrocatalytic reactions is of paramount significance but still in its infancy. Herein, reported is a general NaCl template-assisted… Click to show full abstract

Excavating and developing highly efficient and cost-effective nonnoble metal single-atom catalysts for electrocatalytic reactions is of paramount significance but still in its infancy. Herein, reported is a general NaCl template-assisted strategy for rationally designing and preparing a series of isolated transition metal single atoms (Fe/Co/Ni) anchored on honeycomb-like nitrogen-doped carbon matrix (M1 -HNC-T1 -T2 , M = Fe/Co/Ni, T1 = 500 °C, T2 = 850 °C). The resulting M1 -HNC-500-850 with M-N4 active sites exhibits superior capability for oxygen reduction reaction (ORR) with the half-wave potential order of Fe1 -HNC-500-850 > Co1 -HNC-500-850 > Ni1 -HNC-500-850, in which Fe1 -HNC-500-850 shows better performance than commercial Pt/C. Density functional theory calculations reveal a choice strategy that the strong p-d-coupled spatial charge separation results the Fe-N4 effectively merges active electrons for elevating d-band activity in a van-Hove singularity like character. This essentially generalizes an optimal electronic exchange-and-transfer (ExT) capability for boosting sluggish alkaline ORR activity. This work not only presents a universal strategy for preparing single-atom electrocatalyst to accelerate the kinetics of cathodic ORR but also provides an insight into the relationship between the electronic structure and the electrocatalytical activity.

Keywords: hnc 500; metal single; transition metal; 500 850; single atoms

Journal Title: Advanced materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.