Artificial transistors represent an ideal means for meeting the requirements in interfacing with biological systems. It is pivotal to develop new proton-conductive materials for the transduction between biochemical events and… Click to show full abstract
Artificial transistors represent an ideal means for meeting the requirements in interfacing with biological systems. It is pivotal to develop new proton-conductive materials for the transduction between biochemical events and electronic signals. Herein, the first demonstration of a porous organic polymer membrane (POPM) as a proton-conductive material for protonic field-effect transistors is presented. The POPM is readily prepared through a thiourea-formation condensation reaction. Under hydrated conditions and at room temperature, the POPM delivers a proton mobility of 5.7 × 10-3 cm2 V-1 s-1 ; the charge carrier densities are successfully modulated from 4.3 × 1017 to 14.1 × 1017 cm-3 by the gate voltage. This study provides a type of promising modular proton-conductive materials for bioelectronics application.
               
Click one of the above tabs to view related content.