Single-atomic-site (SAS) catalysts, a new frontier of catalysts, always show extremely high atom efficiency and unexpected catalytic properties. Herein, a pyrolyzing coordinated polymer (PCP) strategy is developed, which is facile… Click to show full abstract
Single-atomic-site (SAS) catalysts, a new frontier of catalysts, always show extremely high atom efficiency and unexpected catalytic properties. Herein, a pyrolyzing coordinated polymer (PCP) strategy is developed, which is facile and widely applicable in the synthesis of a series of SAS catalysts including SAS-Fe, SAS-Ni, SAS-Cu, SAS-Zn, SAS-Ru, SAS-Rh, SAS-Pd, SAS-Pt, and SAS-Ir. The as-obtained SAS catalysts can be easily synthesized at gram scale and the metal loading of SAS-Fe catalysts achieves a record value of 30 wt%, which meets the requirement of practical applications. Moreover, it is discovered that SAS-Fe catalysts show unprecedented catalytic performance for epoxidation of styrene using O2 as the only oxidant (yield: 64%; selectivity: 89%), while Fe nanoparticles and ironporphyrin are inactive. This discovery is believed to pave the way for exploiting the unparalleled properties of SAS catalysts and promoting their industrial applications.
               
Click one of the above tabs to view related content.