An antineoplastic drug-free anticancer strategy enabled by host defense peptides (HDPs)-mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including… Click to show full abstract
An antineoplastic drug-free anticancer strategy enabled by host defense peptides (HDPs)-mimicking synthetic polypeptides is reported. The polypeptide exhibits a broad spectrum of anticancer activity in 12 cancer cell lines, including drug-resistant and highly metastatic tumor cells. Detailed mechanistic studies reveal that the cationic anticancer polypeptide (ACPP) can directly induce rapid necrosis of cancer cells within minutes through a membrane-lytic mechanism. Moreover, a pH-sensitive zwitterionic derivative of ACPP (DA-ACPP) is prepared for in vivo application. DA-ACPP shows negligible hemolysis under neutral physiological conditions, and can be converted back to ACPP in slightly acidic tumor environments, resulting in selective killing of cancer cells. Consequently, DA-ACPP shows an effective inhibition of tumor growth in both 4T1 orthotopic breast tumor models and B16-F10 melanoma pulmonary metastatic models. Overall, these findings demonstrate that synthetic HDPs-mimicking polypeptides represent safe and effective antineoplastic agents, which sheds new light on the development of drug-free synthetic polymers for cancer therapy.
               
Click one of the above tabs to view related content.