LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomic Engineering Catalyzed MnO2 Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density.

Photo from wikipedia

Research interest and achievements in zinc aqueous batteries, such as alkaline Zn//Mn, Zn//Ni/Co, Zn-air batteries, and near-neutral Zn-ion and hybrid ion batteries, have surged throughout the world due to their… Click to show full abstract

Research interest and achievements in zinc aqueous batteries, such as alkaline Zn//Mn, Zn//Ni/Co, Zn-air batteries, and near-neutral Zn-ion and hybrid ion batteries, have surged throughout the world due to their features of low-cost and high-safety. However, practical application of Zn-based secondary batteries is plagued by restrictive energy and power densities in which an inadequate output plateau voltage and sluggish kinetics are mutually accountable. Here, a novel paradigm high-rate and high-voltage Zn-Mn hybrid aqueous battery (HAB) is constructed with an expanded electrochemical stability window over 3.4 V that is affordable. As a proof of concept, catalyzed MnO2 /Mn2+ electrolysis kinetics is demonstrated in the HAB via facile introduction of Ni2+ into the electrolyte. Various techniques are employed, including in situ synchrotron X-ray powder diffraction, ex situ X-ray absorption fine structure, and electron energy loss spectroscopy, to reveal the reversible charge-storage mechanism and the origin of the boosted rate-capability. Density functional theory (DFT) calculations reveal enhanced active electron states and charge delocalization after introducing strongly electronegative Ni. Simulations of the reaction pathways confirm the enhanced catalyzed electrolysis kinetics by the facilitated charge transfer at the active O sites around Ni dopants. These findings significantly advance aqueous batteries a step closer toward practical low-cost application.

Keywords: catalyzed mno2; electrolysis kinetics; energy; aqueous battery; hybrid aqueous

Journal Title: Advanced materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.