LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Scalable and Robust Mesa-Island-Structure Metal-Oxide Thin-Film Transistors and Integrated Circuits Enabled by Stress-Diffusive Manipulation.

Photo from wikipedia

The increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive… Click to show full abstract

The increasing interest in flexible and wearable electronics has demanded a dramatic improvement of mechanical robustness in electronic devices along with high-resolution implemented architectures. In this study, a site-specific stress-diffusive manipulation is demonstrated to fulfill highly robust and ultraflexible amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) and integrated circuits. The photochemically activated combustion sol-gel a-IGZO TFTs on a mesa-structured polyimide show an average saturation mobility of 6.06 cm2 V-1 s-1 and a threshold voltage of -0.99 V with less than 9% variation, followed by 10 000 bending cycles with a radius of 125 μm. More importantly, the site-specific monolithic formation of mesa pillar-structured devices can provide fully integrated logic circuits such as seven-stage ring-oscillators, meeting the industrially needed device density and scalability. To exploit the underlying stress-diffusive mechanism, a physical model is provided by using a variety of chemical, structural, and electrical characterizations along with multidomain finite-element analysis simulation. The physical models reveal that a highly scalable and robust device can be achieved via the site-specific mesa architecture, by enabling generation of multineutral layers and fine-tuning the accumulated stresses on specific element of devices with their diffusion out into the boundary of the mesa regions.

Keywords: integrated circuits; diffusive manipulation; stress diffusive; thin film; highly scalable; film transistors

Journal Title: Advanced materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.