LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g-C3 N4 /rGO/PDIP Z-Scheme Heterojunction.

Photo from wikipedia

A graphitic carbon nitride/rGO/perylene diimide polymer (g-C3 N4 /rGO/PDIP) Z-scheme heterojunction is successfully constructed to realize high-flux charge transfer and efficient photocatalytic overall water splitting. A giant internal electric field… Click to show full abstract

A graphitic carbon nitride/rGO/perylene diimide polymer (g-C3 N4 /rGO/PDIP) Z-scheme heterojunction is successfully constructed to realize high-flux charge transfer and efficient photocatalytic overall water splitting. A giant internal electric field in the Z-scheme junction is built, enabling the charge separation efficiency to be enhanced dramatically by 8.5 times. Thus, g-C3 N4 /rGO/PDIP presents an efficient and stable photocatalytic overall water splitting activity with H2 and O2 evolution rate of 15.80 and 7.80 µmol h-1 , respectively, ≈12.1 times higher than g-C3 N4 nanosheets. Meanwhile, a notable quantum efficiency of 4.94% at 420 nm and solar-to-hydrogen energy-conversion efficiency of 0.30% are achieved, prominently surpassing many reported g-C3 N4 -based photocatalysts. Briefly, this work throws light on enhancing the internal electric field by interface control to dramatically improve the photocatalytic performance.

Keywords: water splitting; rgo pdip; photocatalytic overall; internal electric; overall water; electric field

Journal Title: Advanced materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.